Very High Power* THz Radiation from Relativistic Electrons

G. Larry Carr¹, Michael C. Martin², Wayne R. McKinney², Kevin Jordan³, George R. Neil³, and Gwyn P. Williams³

¹National Synchrotron Light Source, Brookhaven National Lab,
²Advanced Light Source Division, Lawrence Berkeley National Lab,
³Thomas Jefferson National Accelerator Facility.

THz-BRIDGE Workshop
Palazzo dei Congressi - Capri - Italy, September 29 - October 2, 2002

* = Megawatt peak, 20 watt average
Synchrotron Radiation Generation

Synchrotron Radiation Generation - so what's new here?
Synchrotron Radiation Generation - so what’s new here?
Synchrotron Radiation Generation

THz

frequency (cm\(^{-1}\))

watts/cm\(^{-1}\)/mm\(^2\)/sr

∫Pdω=20Watts

- 2000K Black Body
- JLab FEL
- NSLS U4IR 800mA 90x90 mr
- JLab FEL Lasing
Synchrotron Radiation Source at JLab

FUTURE \rightarrow electron storage ring \rightarrow energy storage ring
Jefferson Lab Free-electron Laser Facility

“Energy Storage Ring”

e-beam Specifications
- sub-picosecond pulse length
- up to 75 MHz rep rate
- 40 MeV electron energy
Comparing Coherent THz Synchrotron and Conventional THz Sources

Larmor’s Formula: Power = \(\frac{3e^2a^2}{2c^3} \gamma^4 \) (cgs units)

Auston switch

\(\sim 100 \text{ V} \)

GaAs

\(E = \frac{100V}{10^{-4} \text{ m}} = 10^6 \text{ V/m} \)

\(a = \frac{F}{m} = \frac{10^6 \text{ V} \cdot e/m}{0.5 \text{ MeV} / c^2} = 10^6 \times \left(3 \times 10^8 \right)^2 \frac{1}{0.5 \times 10^6} \)

\(\cong 10^{17} \text{ m/sec}^2 \)

Synchrotron radiation

\(e^- \rightarrow 40 \text{ MeV} \)

GaAs

\(a = \frac{c^2}{\rho} = \left(3 \times 10^8 \right)^2 \frac{1}{0.5 \times 10^6} \cong 10^{17} \text{ m/sec}^2 \)

if \(\rho = 1 \text{ m} \)
Comparing Coherent THz Synchrotron and Conventional THz Sources

Larmor’s Formula: \(\text{Power} = \frac{3e^2a^2}{2c^3} \gamma^4 \) (cgs units)

\[\text{Power} \propto \gamma^4 \]

Synchrotron

To compare radiation in the THz region, \(~40\) MeV electrons will get the critical energy into the IR. So,

\[\gamma \approx 75 \]

\[\gamma^4 \approx 10^7! \]

Relativistic electrons gain a huge factor in THz power.
Jefferson Lab Light Source Facility
Jefferson Lab FEL Superconducting Linac
Superconducting Radio-Freq. Linac
Jefferson Lab FEL Wiggler
Coherent THz measurement setup

We measured the bend-magnet synchrotron radiation right before the FEL, when the beam is maximally compressed.
Coherent THz measurement setup

- Crystal quartz window
- Collimating optic
- Nicolet Nexus 670 FTIR bench
- LHe cooled Si bolometer detector
Coherent THz compared to thermal source

![Graph showing measured intensity of coherent THz compared to a thermal source. The graph includes data from JLab scaled to 4.6 mA, JLab measured at 0.02 mA, and a 1400 K Thermal Source (Globar™).]
Quadratic Dependence of THz Emission on Current

Integrated THz Intensity (arb. units)

Current (µA)

Measured intensity

Fit to (Current)2
Expected polarization ratio for 60 mrad port at 30 cm$^{-1}$ is 6:1.

We observed 5:1. Good agreement.
“Noise” vs. frequency

Bolometer detector output into a spectrum analyzer. FTIR scanning mirror turned off.

- JLab THz Beam
- Beam Blocked

Frequency (Hz) vs. dB V
Simultaneous production of THz, 3 µm, and 10 keV X-ray femtosecond pulses

- 800 fsec pulses at 37.4 MHz
- Synchronized to <<psec levels (same beam!)
- All three wavelengths at world class fluxes

THz pulses, ~20 W total power

3 micron lasing >1 kW

10 keV X-ray > 10^7 ph/sec/0.1% BW
The Future

- New accelerator with 10mA of average current
- Large THz extraction port (150 mr x 150 mr)
- Simultaneous IR light – electro-optic detection
- Dedicated laboratory
Jefferson Lab FEL Upgrade

Photo-cathode gun

3 s-c linacs

THz

Energy Recovery Loop
New THz facility in JLab FEL building
Acknowledgements

This work was supported primarily by the U.S. Dept. of Energy

DE-AC02-76CH00016 (Brookhaven National Lab)
DE-AC03-76SF00098 (Lawrence Berkeley National Lab)
DE-AC05-84-ER40150 (Jefferson Lab)

The JLab FEL is supported by the Office of Naval Research, the Commonwealth of Virginia and the Laser Processing Consortium.

We are indebted to our colleagues at each institution for critical support without which these experiments would not have been possible.